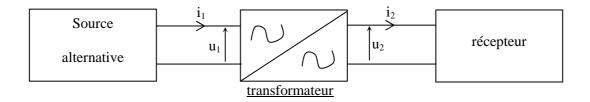
<u>Chapitre 3 :</u> Le transformateur

I / Présentation

- 1. Constitution
- 2. Symbole et convention

II / Transformateur parfait en sinusoïdal

- 1. relation entre les tensions
- 2. formule de Boucherot
- 3. les intensités
- 4. les puissances

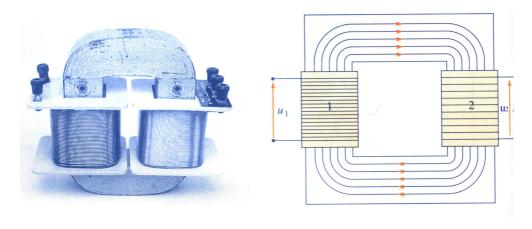

III / Transformateur réel

- 1. plaque signalétique
- 2. les pertes
 - a) pertes par effet Joule
 - b) pertes magnétiques
 - c) fuites magnétiques
 - d) modèle équivalent
- 3. modèle du transformateur ramené au secondaire
 - a) hypothèse de Kapp
 - b) modèle de Thévenin
- 4. détermination des pertes et du modèle
 - a) essai à vide
 - b) essai en court circuit
- 5. rendement
- 6. chute de tension en charge

I / Présentation

• Le transformateur est une machine statique permettant, en alternatif, la modification de certaines grandeurs (tension, intensité) sans changer leur fréquence.

• Il assure la transmission de la puissance avec un excellent rendement.

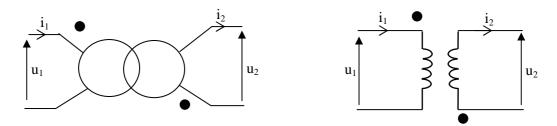


- U_1 et U_2 sont les valeurs efficaces de u_1 et u_2 :
 - . Si $U_2 > U_1$, le transformateur est élévateur de tension
 - . Si $U_2 < U_1$, il est abaisseur de tension
 - . Si $U_2 = U_1$, il assure l'isolement électrique entre la source et la charge.

1. Constitution

Le transformateur est un quadripôle constitué d'un circuit magnétique fermé sur lequel on a bobiné deux enroulements électriquement indépendants.

La tension sinusoïdale u₁ au primaire crée un champ magnétique variable qui, guidé par le noyau, traverse l'enroulement secondaire. Celui-ci est donc le siège d'une tension induite u₂.



L'enroulement primaire comporte N_1 spires et le secondaire N_2 .

Le primaire reçoit de la puissance du réseau : il se comporte comme un récepteur (convention récepteur)

Le secondaire fournit de la puissance à la charge : il se comporte comme un générateur (convention générateur)

2. symboles

Les bornes sont homologues, repérées par des points sur le schéma, si i₁ entrant par l'une et i₂ entrant par l'autre créent dans le circuit magnétique des champs magnétiques de même sens.

II / Transformateur parfait en sinusoïdal

1. relation entre les tensions

$$\frac{\mathbf{u}_2}{\mathbf{u}_1} = -\frac{\mathbf{e}_2}{\mathbf{e}_1} = -\frac{\mathbf{N}_2}{\mathbf{N}_1} = -\mathbf{m}$$
 où m : rapport de transformation

en complexe : $\underline{U_2} / \underline{U_1} = -m$

en valeur efficace : $U_2 / U_1 = m$

2. formule de Boucherot

$E_1 = 4,44 N_1 B_{max} S f$

 E_1 : valeur efficace de la fém $e_1\ (V)$

N₁ : nombre de spire au primaire

B_{max} : valeur max du champ magnétique dans le circuit (Tesla T)

f : fréquence d'alimentation (Hz) S : section du circuit magnétique (m²)

3. les intensités

De même,

En valeurs instantanées : $i_1 = -m.i_2$

en complexe : $\underline{\mathbf{I}}_1 = -\mathbf{m}$. $\underline{\mathbf{I}}_2$

en valeur efficace : $I_2 / I_1 = 1/m$

4. <u>les puissances</u>

$$\textit{puissances apparentes}: \ S_1 = U_1 \times I_1 = \frac{U_2}{m} \times m \times I_2 = U_2 \times I_2 \quad donc \quad S_1 = S_2$$

puissances actives : d'après la définition du transformateur parfait $P_1 = P_2$ $P_1 = S_1 \times \cos \phi_1 = S_2 \times \cos \phi_2$

puissances réactives : $Q_1 = S_1 \times \sin \phi_1 = S_2 \times \sin \phi_2 = Q_2$

Exercice : Le primaire d'un transformateur parfait, de rapport de transformation m=0,4 est alimenté par une tension sinusoïdale de valeur efficace 220V et de fréquence 50Hz. Le secondaire alimente une bobine de resistance 10Ω et d'inductance 0,03H Calculer les différentes puissances fournies par le secondaire.

$$U_2=m.U_1 = 0.4 \times 220 = 88V$$

 $Z_2 = \sqrt{R^2 + (L_0)^2} = 13.7\Omega$

$$I_2=U_2/Z_2=88/13,7=6,4A$$

$$Tan\phi_2 = 2\pi fL/R = 0.942 \implies \phi_2 = 43^\circ$$

Donc:

$$S_2 = U_2.I_2 = 563 \text{ VA}$$

$$P_2 = S_2.cos \ \phi_2 = 410 \ W$$

$$Q_2 = S_2.\sin \phi_2 = 386 \text{ VAR}$$

III / Transformateur réel

1. plaque signalétique

Elle indique : $U_{1:}$ tension d'alimentation du primaire

 S_n : puissance apparente nominale

 U_{20} : tension d'utilisation à vide du secondaire

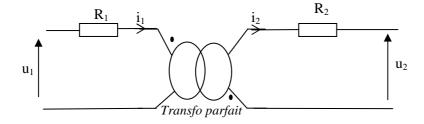
f : fréquence d'utilisation

on peut alors calculer : le rapport de transformation $m = U_{20} / U_1$

les intensités des courants nominaux $I_{1n} = S_n / U_1$ et $I_{2n} = S_n / U_{20}$

2. <u>les pertes</u>

le transformateur réel est un transformateur parfait avec des pertes (Joule, magnétique, fuites)


- les pertes par effet Joule dans les enroulements
- les pertes magnétiques (Foucault, hystérésis)
- les fuites magnétiques : toutes les lignes de champ ne sont pas canalisées par le circuit magnétique fermé.

a) pertes par effet Joule

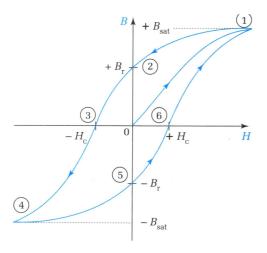
ullet elles se produisent dans les résistances R_1 et R_2 des enroulements traversés par les courants

$$i_1 \ et \ i_2: \qquad \qquad P_{Joule} = R_1.I_1{}^2 + R_2.I_2{}^2$$

ullet on ajoute donc sur le schéma équivalent du transfo parfait, les résistances R_1 et R_2

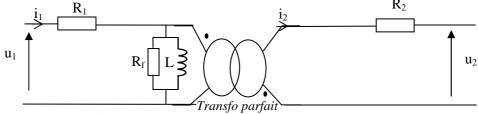
b) pertes magnétiques

Le circuit magnétique est le siège de pertes magnétiques :

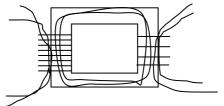

- pertes par courants de Foucault (⇒ échauffement).
- Pertes par hystérésis.

⇒ on limite les pertes par courants de Foucault, en utilisant un circuit magnétique feuilleté (les courants passent plus mal)

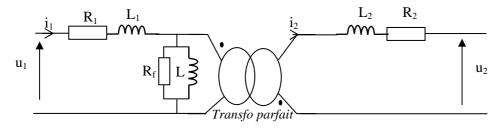
par hystérésis, en utilisant des aciers doux (cycle hystérésis étroits)


Rappels magnétiques

- Courants de Foucault : courants induits dans un conducteur soumis à un champ variable.
- Hystérésis d'un matériaux :

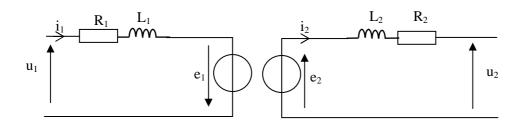

La désaimantation se fait avec un retard par rapport à l'aimantation.

- Les pertes magnétiques dépendent de U₁ et f.
- ces pertes se produisent dans le circuit magnétique, dès que le primaire est alimenté.
- Ces pertes se traduisent par une consommation supplémentaire de puissance réactive (comme une inductance pure : L_F) et de puissance active (comme une résistance R_F)

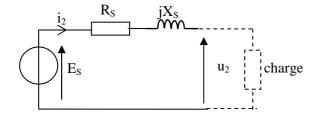

c) fuites magnétiques

toutes les lignes de champ ne sont pas canalisées par le circuit magnétique, certaines se referment dans l'air.

Donc on ajoute L₁ et L₂ sur le schéma précédent, et on obtient le modèle équivalent définitif


d) modèle équivalent

3. modèle du transformateur ramené au secondaire


a) hypothèse de Kapp

on néglige i₁₀ devant i₁ et i₂ <u>au fonctionnement nominal</u>

Alors comme pour un transfo parfait, on a : $I_1 = m.I_2$

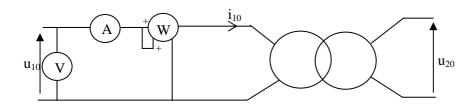
b) Modèle de Thévenin

MET ramené au secondaire

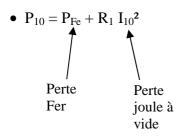
$$Avec \ \underline{Z}_s = \underline{R}_{\underline{s}} + j.X_s \qquad \qquad où \qquad \begin{cases} R_S = R_2 + m^2R_1 \\ X_S = X_2 + m^2X_1 \end{cases}$$

R_S: résistance du transfo ramenée au secondaire

(rend compte des résistances des enroulements)


X_S: réactance du transfo ramenée au secondaire

(rend compte des fuites magnétiques)

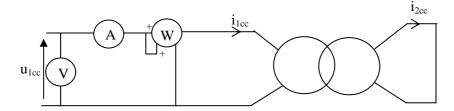

$$\underline{U}_2 = \underline{E}_S - \ \underline{Z}_S.\underline{I}_2$$

4. détermination des pertes et du modèle

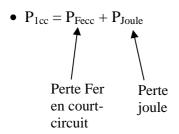
a) essai à vide

- On se place à U₁ nominal
- Le wattmètre mesure la puissance absorbée à vide par le transfo : P₁₀

or I₁₀ très faible (car à vide donc I₂ nul)


 $donc\ R_1I_{10}{}^2 << P_{Fe}$

Et finalement


$$P_{10} = P_{Fe} \\$$

- l'essai à vide permet de mesurer les pertes Fer
- les pertes Fer dépendent de U₁
- A vide : $\underline{I}_2 = 0$ \Rightarrow $\underline{E}_S = \underline{U}_{20}$

b) essai en court circuit

- on se place à U_{1cc} réduite, de façon à avoir $i_{2cc}=i_{2n}$ (valeur nominale)
- ullet le wattmètre mesure la puissance absorbée en court-circuit par le transfo : P_{1cc}

or U_{1cc} faible

donc P_{Fecc} négligeable

finalement
$$P_{1cc} = P_{Joule}$$

- l'essai en court-circuit permet de mesurer les pertes Joule
- En court circuit : on détermine :

$$Z_s = m^2 \frac{U_{1cc}}{I_{1cc}}$$

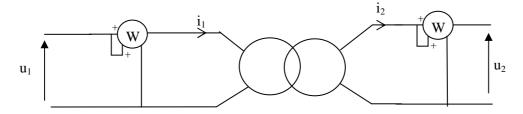
$$R_s = \frac{P_{1cc}}{I_{2cc}^2}$$

en effet :
$$P_{1cc} = R_1 I_{1cc}^2 + R_2 I_{2cc}^2$$
 (on néglige les pertes Fer)

$$= m^2 R_1 I_{2cc}^2 + R_2 I_{2cc}^2$$
 car $I_{1cc} = m.I_{2cc}$

$$= (m^2 R_1 + R_2) I_{2cc}^2$$

 $donc\ R_S = P_{1cc}/I_{2cc}{}^{\textbf{2}}$


et donc on en déduit :

$$X_s = \sqrt{Z_s^2 - R_s^2}$$

9

5. rendement

• méthode directe:

• méthode des pertes séparées :

essai à vide : P_{Fer}

essai en court circuit : P_{Joule}

essai en charge: P2

$$\eta = \frac{P_2}{P_1} = \frac{P_2}{P_2 + P_{Fe} + P_J}$$

Exercice:

Un transfo 230/24V; 63VA

Un essai à vide : $P_{10} = 5W$

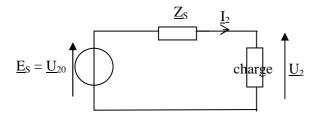
Un essai en court circuit : $P_{1cc} = 10W$

Un essai sur résistance permet de mesurer $P_2 = 50 \mbox{W}$

Déterminer :

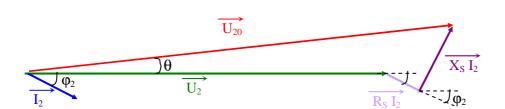
$$1/I_{1n}$$
; I_{2n} ; m

2/ η


3/ R₁ et R₂ sachant que R₂ = 100.R₁

$$I/I_{1n} = 270 \text{mA}$$
 ; $I_{2n} = 2,6 \text{A}$; $m = 0,11$

$$2/\eta = 50/(50+5+10)=0.77$$


$$3/$$

$$R_1\times 0.27^2+R_2\times 2.6^2=10 \qquad et \qquad R_2=100.R_1$$

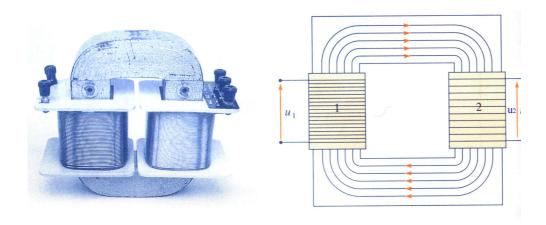
$$donc~R_1=15m\Omega \qquad et \qquad R_2=1,5\Omega$$

6. chute de tension en charge

Loi des mailles
$$\underline{U}_{20} = \underline{U}_2 + \underline{Z}_S.\underline{I}_2$$

$$= \underline{U}_2 + \underline{R}_S.\underline{I}_2 + \underline{j}\underline{X}_S.\underline{I}_2$$

Diagramme de Fresnel : $\overrightarrow{U_{20}} = \overrightarrow{U_2} + \overrightarrow{R_{S.I_2}} + \overrightarrow{X_{S.I_2}}$



 θ faible, donc on fait l'approximation $\theta=0$ θ d'où la formule approchée :

$$\Delta U_2 = Rs \ I_2 \cos \phi + Xs \ I_2 \sin \phi$$

Docs élève

Doc 1

